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Abstract 

In this paper, we examine the impact policy choices, including a carbon tax, on 

the optimal allocation of power across different generation sources and on future 

investments in generating facilities. The focus in on the Alberta power grid as it is 

heavily dependent on fossil fuels and has only limited ties to other power grids, although 

the model could be extended to a larger and even multiple grids. Results indicate that, as 

wind penetrates the extant generating mix characterizing the grid, cost savings and 

emission reductions do not decline linearly, but at a decreasing rate. However, if 

flexibility is allowed then, as the carbon tax increases to $40 per tCO2 or above, existing 

coal plants start to be replaced by newly constructed wind farms and natural gas plants. If 

coal can be completely eliminated from the energy mix and replaced by natural gas and 

wind, substantial savings of 31.03 Mt CO2 (58% of total emissions) can result. However, 

this occurs for carbon taxes of over $170/tCO2. The associated high capital costs of new 

generating facilities may thus not be an ideal use of funds for addressing climate change. 

 

Key Words: Economics of wind power; grid system modeling; operations research; 
carbon taxes and coal power plants 

 



1. Introduction 

Governments are increasingly concerned about climate change and finding the 

best means for curbing CO2 emissions. With electrical power generation making up a 

large portion of most countries’ total CO2 emissions, there is increasing pressure to 

reduce reliance on fossil-fuel power plants, especially coal and oil plants that emit the 

most CO2 per megawatt hour (MWh) of electricity. The problem is that, while there are a 

variety of alternatives to coal and oil, coal in particular is a ubiquitous and inexpensive 

fuel. As a result, development of coal-bed methane and carbon capture and storage 

(CCS), perhaps with new co-fired coal-biomass power plants, have been proposed to 

reduce CO2 emissions while continuing to rely on coal. Another alternative for reducing 

CO2 emissions from power generation is to replace coal plants with natural gas facilities, 

although this does not reduce reliance on fossil fuels per se and hastens the day when 

natural gas is no longer competitive because prices have increased due to higher demand. 

Increasing reliance on nuclear power is also an option, but its viability is mitigated by 

safety fears and issues related to the processing and/or disposal of spent fuel. 

Renewable energy sources such as tidal, solar and wind are also being promoted, 

especially in Europe where natural gas is a less attractive option because of uncertainty 

about supply reliability. European policy is to have 20% of all energy come from 

renewable sources by 2020, with biofuels to account for 10% of fuel used in 

transportation (BBC News, 2007). While biomass, solar and tidal sources are all being 

deployed, wind power is currently the fastest growing renewable energy source 

(DeCarolis & Keith, 2006). By the end of 2005, worldwide wind capacity had increased 

to 59,000 MW (Global Wind Energy Council, 2006); even in Canada, which has plenty 



of energy alternatives, wind capacity rose from 137 MW in 2000 to 1460 MW by the end 

of 2006 (Canadian Wind Energy Association, 2006). As a result of declining costs (due to 

technical improvements) and various subsidies, installed wind power capacity is expected 

to continue to expand at a high rate. Indeed, Jacobson and Master (2001) claim that large 

wind farms are an economically viable alternative to coal. 

Several issues limit the viability of wind power as a major energy alternative, 

however. Wind turbines could have a negative effect on climate, for example, as they 

extract kinetic energy and impact turbulent transport in the atmospheric boundary layer 

(Keith et al., 2004). Turbines also result in visual disamenities, are considered a wildlife 

hazard (especially for birds), and constitute a health risk as a result of fire, ice throw, 

blades breaking loose and structural collapse.1 While such externality costs might be 

small, perceptions may cause people to place significant values on them. Nonetheless, it 

is not the externality costs of wind that concern us in this paper. Our focus is on the direct 

and indirect costs of supplying wind power to electricity grids. 

The spatial distribution and intermittency of wind resources directly affect the 

costs of wind power (DeCarolis & Keith, 2005). As a result wind power output is 

significantly less than rated capacity, with capacity factors (cfw) averaging some 25% 

worldwide (Table 1), where the capacity factor is determined as: 

(1) cfw =
hrsdayscapacity

yearoneingeneratedpower actual
24365 ××

. 

An increase in spinning reserves is often to cover fluctuations in wind power, and 

increased reliability of alternative capacity is necessary to deal with peak demand 

                                                 
1 Caithness Windfarm Information Forum (http://www.caithnesswindfarms.co.uk/ as viewed 13 
April 2007) reports 349 incidents, including more than 40 fatalities (12 to the public), to the end 
of February 2007. 
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situations when wind power may not be available. Consequently, extant generators often 

operate at partial capacity dispatching power to the grid in order to backstop unexpected 

declines in wind availability, resulting in efficiency losses at base-load (coal, nuclear or 

combined-cycle natural gas) power plants as generators operate below their optimal 

ratings. Fluctuations in wind result in increased ramping-up and ramping-down of base-

load generators, and more frequent starts and stops in the case of peak-load (open-cycle) 

gas plants, leading to increased operating and maintenance (O&M) costs. The problem 

can be mitigated by a compressed air or pump storage system or a traditional battery, but 

these solutions are not currently viable.  

Because of the storage problem associated with intermittency of supply, the most 

effective use of wind power is in electricity grids that have large hydropower capacity 

and large storage reservoirs; water can be stored behind hydro dams by withholding 

hydroelectricity from the grid when non-dispatchable wind power is available, but 

releasing water and generating electricity when there is no wind power. This is precisely 

what happens with wind power in Denmark, where hydro reservoirs in Norway provide 

de facto storage (White, 2004), while lack of storage and/or grid connections to a larger 

market make wind power a less attractive option in Ireland and Estonia (ESB National 

Grid, 2004; Liik, Oidram & Keel, 2003).  

In this paper, we investigate the potential destabilizing effects of introducing large 

wind farm capacity on an existing electricity grid. We choose to examine the Alberta 

power grid because it is heavily dependent on fossil fuels, especially coal and combined-

cycle natural gas, but wind power is projected to expand from 3% of installed capacity to 

20% or more by 2010. At the same time, electricity demand is increasing rapidly as a 
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result of economic growth brought about by oil sands development. Further, 

hydroelectric generating capacity is relatively small, reservoir capacity is limited, and 

transmission capacity to other regions is inadequate or non-existent. In this regard, the 

electricity grid has characteristics similar to those of Ireland and Estonia.  

Our specific purpose is to examine the following questions: What are the real 

costs of reducing CO2 emissions using extant wind power in Alberta, and how will these 

change as additional wind capacity is added to the system? What impact would a CO2-

emissions tax have on the configuration of the generating mix, supposing flexibility in 

decommissioning coal plants, expanding wind power and adding new combined-cycle 

gas turbine (CCGT) plants? In particular, how much investment in wind capacity would 

such a tax bring about if the Alberta Electrical System Operator (hereafter AESO) were 

not encumbered in choosing the generation mix? Given Alberta’s location to the east of 

the Rocky Mountains and the prevailing winds from the mountains, would it be possible 

to increase wind power enough that coal power plants can be removed completely from 

the grid, vastly reducing CO2 emissions?  

To address these and other questions, we construct a dynamic, constrained 

optimization model of the Alberta electrical grid. We take the view of a social planner 

looking to minimize the cost of electricity generation. The mathematical model is 

developed in the next section, while the Alberta power grid is described in greater detail 

in section 3. In section 4, we use the model to determine the CO2 emissions from power 

generation in Alberta and, to validate the model compare them to actual emissions. The 

model addresses issues related to the destabilizing effects of wind, the cost of emissions 

reductions of extant wind farm installations and the optimal expansion of wind farms in 

 4



response to various levels of carbon taxes. We investigate the impact of the addition of 

seemingly uncorrelated wind sites on the optimal generation mix and look at whether 

uncorrelated and unpredictable wind sites might be a viable replacement for predictable 

carbon intensive forms of power generation such as coal. We conclude in section 5 with a 

discussion of the implications of our results for policy and future research needs. 

2. Model of the Electrical Power Grid: Optimal Economic Dispatch 

We employ a dynamic mathematical programming model to determine the 

optimal assignment of power output to generators in a power grid – the optimal economic 

dispatch. Total cost (TC) over all generators is minimized subject to system constraints. 

Optimization occurs over a full year using an hourly time step, although the choice of 

time step is arbitrary and could easily be increased or decreased depending on available 

data and the problem at hand. We assume rational expectations, that the system operator 

is fully knowledgeable about all of the costs and system constraints and has the ability to 

make a perfect forecast of demand and wind availability. The operator is required, 

however, to use any wind power sent to the grid – wind power is non-dispatchable.  

A mathematical representation of the optimal control model is as follows: 

(2) ( )∑ ∑
×

= =
⎥
⎦

⎤
⎢
⎣

⎡
+++++++=

days

t i

iti
wwwtww

n

i
iiiitii

QQ efficiency
eQ

COVQFCOVPQFMinTCMin
i,ti,t

24

1

,
,

1
, )()( τ

Subject to: 

(3) Demand is met ( ) daystDsQQ
n

i
ttwti ×=∀+≥+∑

=

24,...,1,1
1

,,  

(4) Ramping-up limits daystniRUQQ ititi ×=∀=∀≤−+ 24,...,1;,...,1,,1,  
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(5) Ramping-down limits daystniRDQQ ititi ×=∀=∀≤− + 24,...,1;,...,1,1,,  

(6) Capacity constraints daystniCQ iti ×=∀=∀≤ 24,...,1;,...,1,,  

(7) Non-negativity daystniQ ti ×=∀=∀≥ 24,...,1;,...,1,0,  

where Qi,t is the amount of power (MWh) delivered to the grid by generator i (coal, 

hydro, gas, biomass) at time t (hour); w refers to wind; Fi is the amortized annual fixed 

cost of operating generator i; P is the cost of producing a unit of energy for a given 

generator ($/MWh); Oi refers to O&M costs associated with the capacity (Ci) of each 

generator ($/MW); Dt is the demand (load) in any given period t; s is a reliability factor 

so that not only demand but a ‘safety’ allowance is met; ei refers to the emissions factor 

that converts the electricity produced by generator i to CO2 output; and τ refers to a 

carbon tax that depends on the energy produced and the emissions factor. 

The cost of producing energy P is determined by the efficiency of a generator and 

the associated cost of fuel per ton of oil equivalent (US$/toe), converted to Canadian 

dollars: 

(8) 
i

i efficiency
rateexchangefactorconversioncostP ××

= , 

where the conversion factor converts $/toe into $/MWh (= 11630
1000  as 1000 toe = 11630 

MWh). The ramping constraints imply that generator output can only be decreased (RDi) 

or increased (RUi) by a predetermined amount per period. Therefore, a generator’s output 

cannot drastically fluctuate between periods as the ramping constraints do not allow for 

generators to be instantaneously turned off or on in any one period (except for the peak 

power plant). CO2 emissions are measured in metric tons (tCO2) and determined ex-post 

as: 
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(9) ∑ ∑
×

= =
⎥
⎦

⎤
⎢
⎣

⎡
=

days

t

n

i i

iti

efficiency
eQ

tCO
24

1 1

,
2 . 

3. Wind Power and the Alberta Electrical Grid 

We apply our model to the Alberta power grid because it is heavily dependent on 

fossil fuels, with 51% of 2006 demand met by coal (5840 MW of ‘reliable’ installed 

capacity), 37% by natural gas (4252 MW), 7% hydro (869 MW), 3% wind (362 MW), 

and 2% biomass (178 MW) (AESO, 2007).2 Coal clearly dominates because of its low 

cost.3 Wind capacity has more than doubled since 2003 and can be expected to increase 

substantially in the near future because of prevailing winds off the Rocky Mountains. 

These prevailing winds result in Alberta having capacity factors (Table 2) exceeding 

those in other places with significant wind installations (see Table 1). Rapid increases in 

electricity demand as a result of economic expansion associated with oil sands 

development (which also requires significant energy inputs to extract the oil) will also 

have a large impact of wind capacity growth.  

Interest in wind power has grown substantially in Canada, particularly since the 

Canadian Wind Power Production Incentive (WPPI) was announced in the December 

2001 federal budget. The WPPI is intended to encourage electric utilities, independent 

                                                 
2 Capacity numbers include behind the fence demand, so only a portion of these capacities is 
available for sale to the grid at any given time. 
3 A cost-benefit analysis of an Ontario policy to shut down that Province’s coal plants found that 
it was preferable to keep them running because coal constitutes a cheap and reliable fuel 
(McKitrick, Green & Schwartz, 2005). British Columbia also appears to be leaning toward coal 
as BC Hydro, the government-owned power provider, recently awarded two of its 38 contracts for 
new power installations to co-fired coal-biomass plants that would constitute the bulk of 
additional power to be provided to the grid (BC Hydro, 2006). Although this represents the first 
time that coal will be used to generate power within the Province, the government recently added 
the proviso in its Green Plan that the CO2 emissions must be captured and stored (Ministry of 
Energy Mines and Petroleum Resources, 2007). 
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power producers and other stakeholders to gain experience in this emerging and 

promising energy alternative (Natural Resources Canada, 2002). WPPI’s goal is to reduce 

CO2 emissions by three megatons (106 metric tons) of CO2 (Mt CO2) annually by 2010 

through increased wind power.4 Wind farm projects in Alberta already account for some 

one-quarter of the wind capacity constructed or commissioned under WPPI. However, 

total installed wind capacity may expand to 2718.5 MW by 2010 if all projected additions 

are completed (Alberta Department of Energy, 2006). This would constitute an increase 

of some 1650% over a seven-year period.  

Due to the intermittency of wind, a large increase in wind power could destabilize 

the Alberta grid, with ‘reserve’ power necessary to cover any fluctuations in wind. 

Currently, the AESO does not use wind power in reserve margins, as it is highly variable 

and for up to 30% of the year produces no power (AESO, 2006a). Interestingly, the 

AESO uses only 68% of total installed hydro capacity in calculating reserve margins, 

because there is a very limited amount of hydro storage capability and hydroelectricity 

output is lowest during the winter months when load is at its maximum. This is especially 

important for the expansion of wind capacity since hydro storage cannot be relied upon to 

smooth volatility of supply associated with variability in wind availability. To make the 

Alberta grid more manageable and better able to respond to wind variability, a 1200 MW 

natural gas plant costing more than $2 billion has been proposed (Cattaneo, 2007). 

                                                 
4 More recently, the federal government announced it would make $1.5 billion in subsidies 
available through the ecoENERGY Renewable Initiative to bolster Canada’s renewable energy 
supplies (Office of the Prime Minister, 2007). Some $300 million is earmarked over the next four 
years to install 4000 MW of renewable generating capacity (CBC, 2007), most of which will 
come from wind. 
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4. Empirical Application 

We use 2006 demand and wind supply data for Alberta (AESO, 2006b, 2006c). 

To determine total CO2 emissions, we multiply the total of each energy source used to 

generate electricity by its associated emissions factor and divide by its efficiency factor 

(International Energy Association, 2001). For computational ease, all coal plants are 

treated as a single plant that uses pulverized coal, while gas plants are combined into a 

single combined-cycle gas turbine facility. All costs are converted from 2000 dollars to 

2006 dollars using the consumer price index (Statistics Canada, 2007). Fixed O&M costs 

are $10.87 per kW per year for combined-cycle gas turbines, $39.94/kW-yr for 

pulverized coal, $45.32/kW-yr for biomass and $45.32/kW-yr for wind. Variable O&M 

costs equal $4.99 per MWh for combined-cycle gas and $0.70/MWh for pulverized coal 

(Natural Resources Canada, 2005). When considering questions related to the investment 

in new wind capacity or CCGT capacity and/or decommissioning of some coal capacity, 

the capital costs of wind power and a new CCGT plant are also taken into account. Costs 

for a typical wind power farm are $1855/kW in 2006 dollars, while they are $1198/kW 

for a CCGT plant (Natural Resources Canada, 2005). Amortizing this over 25 years at a 

6% discount rate results in a cost of $145,100 /MW-yr for wind and $93,740/MW-yr for 

CCGT.  

For several of the questions addressed in this study, wind generating capacity 

needs to be increased. This is done in one of two ways in the model: (1) Arbitrarily 

increase the capacity of extant wind farms, so that the power profile remains unchanged 

except in its magnitude; and (2) construct new wind farms using available wind speed 

data from sites in the BC Peace River Region near the Alberta border (BC Hydro, 2004). 

One would expect the resulting power profile for a wind farm located in northwestern 
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Alberta to be as uncorrelated as possible with that of wind farms in the southern part of 

the Province5, where most of Alberta’s wind power is currently produced (Blackwell, 

2006) – sites in northwestern Alberta are expected to increase the length of time during 

the year that wind power will be available. 

Information on wind intensity is available for the period January 1, 2002 to 

December 31, 2002 at the Aasen, Bessborough, Erbe and Bear Mountain sites located 

near Dawson Creek, BC. This is the only full calendar year for which no data points are 

missing. Wind speeds were measured at reference heights of 30 meters and 50 meters, 

and the wind speed measured at the reference height is converted to wind speed at the 

turbine’s hub height as follows (Patel, 1999): 

(10) 
α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

R

H
RH H

HVV   

where VR is the wind speed measured at reference height and VH is wind speed at hub 

height (or any other relevant height), while HR (50 m) and HH

                                                

 (86 m) are the respective 

reference and hub heights. The parameter α is the ground surface friction, with α varying 

between 0.10 for lake, ocean and smooth hard ground to 0.4 for a city with tall buildings. 

We choose α = 0.15, which is equivalent to foot high grass on level ground. To determine 

the power output from the wind turbines we used the power specs of the ENERCON E-

70 (ENERCON, 2007) and linear interpolation of a power curve to determine the power 

 
5 The correlation between the individual northern and southern wind sites varies between 
 –0.078 < r <-0.011 implying a very small negative or no correlation between any northern site 
and any southern site. The correlation between individual northern sites varies between 0.435 < r 
< 0.847 and between 0.780 < r < 0.833 for individual southern sites implying a positive 
correlation. 
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output at any given wind speed.6 

The resulting linear programming model is solved using Matlab with calls to the 

CPLEX solver in GAMS (GAMS Development Corporation, 2006). 

5. Results and Discussion 

We employ the model to estimate CO2 emissions, cost of power production and 

the ‘optimal’ configuration of generating capacity under a carbon tax. CO2 emissions are 

determined from equation (8) where ei equals 0.346 tCO2 per MWh for sub-bituminous 

coal and 0.202 tCO2 per MWh for natural gas (International Energy Association, 2001). 

Efficiency factors vary depending on generator make-up, with factors of 38.4% for super-

critical units such as Genesee 3 and 35% for sub-critical units such as Genesee 1 and 2 

and Keephills (AMEC AMERICAS LIMITED, 2006). As a result of our aggregation, we 

use an efficiency factor of 37% for coal plants. CCGT plants can have an efficiency 

greater than 50% since the waste heat from the gas turbines is used to produce steam 

(AMEC AMERICAS LIMITED, 2006). However, for the Alberta situation, an efficiency 

of 49% is used for CCGT based on the aggregation and the mix of new efficient 

technology and older less efficient technology.  

Given our model lacks detail concerning individual generators, we validate the 

model by comparing actual CO2 emissions with modeled emissions. Based on Alberta’s 

2006 energy configuration and 2006 demand, our model estimates total emissions of 53.3 

Mt CO2. This compares with actual estimated emissions of 52.7 Mt CO2 for electricity 

generation in the Province in 2004 (Natural Resources Canada, 2006).  

                                                 
6 The analysis does not depend on the size or make of wind turbine. The ENERCON turbine is 
used simply because data were readily available. 

 11



The major reason for increased interest in wind power in Alberta is to reduce CO2 

emissions. Therefore, one of the major questions to be answered is: What is the cost of 

reducing CO2 emissions in Alberta using wind power? Cost is determined using a with-

without scenario as: 

(11) 
windwithwindwithout

windwithoutwindwith

tCOtCO
TCTC

22 −

−
 

From the model, total cost without wind equals $1767.96 million and produces 53.62 Mt 

CO2, while the total cost with currently installed wind equals $1789.37 million (including 

the capital cost of wind farms) and produces 53.29 Mt CO2. Therefore, the cost of 

reducing emissions by relying on wind amounts to $66 per tCO2. This is significantly 

more than the peak value at which CO2 emission offsets traded on the European exchange 

(maximum trade value was around €29/tCO2) and significantly more than its current 

(Spring 2007) trading value of about €1.00 /tCO2 (EEXA Energy Exchange Austria, 

2007; Powernext, 2007). 

Market instruments are considered a good way to encourage the growth of less 

carbon intensive forms of energy production. We consider this by introducing a carbon 

tax in the model. For the extant nine wind farms, we group the four sites with the highest 

capacity factors and the five sites with the lowest capacity factors together to produce two 

wind sites rather than nine (Table 2). 

The two aggregated wind farms are permitted to expand their overall capacity to 

1500 MW at each site while wind turbines can be built at northern sites to a capacity of 

500 MW at each site, with the capacities chosen to optimize the model’s objective 

function. Further, the size of the new combined-cycle natural gas plant is also optimally 

chosen. Results are provided in Figure 1. 
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Wind capacity increases from its current level beginning with a carbon tax 

slightly below $45 per tCO2, expanding further when tax rates reach approximately 

$130/tCO2 and attaining a maximum of 5000 MW of installed capacity once the carbon 

tax exceeds $200/tCO2. Given the variability of wind-derived power, a new combined-

cycle gas plant is required when wind capacity reaches slightly less than 2000 MW 

capacity, but the required optimal capacity of such a CCGT plant increases rapidly for 

carbon taxes of $70 to $150 per tCO2, and then slowly rises to nearly 3500 MW. These 

increases in power supplied by the new gas plant and wind sites allow the 

decommissioning of much carbon intensive coal capacity (Figure 2).    

The capacity factor of a wind farm is determined by the wind profile of the site at 

which it is located (along with other factors, such as turbulence, not considered here).  In 

Figure 1, the first wind turbines are built are at the Bear Mountain site, which has the 

highest capacity factor of 35%. This is followed by an expansion of turbines at the best 

four existing sites, which had a combined wind capacity factor of around 34% in 2006. 

The most significant benefits in terms of CO2 reductions come at these higher capacity 

factors. But it also requires the introduction of the new combined-cycle natural gas plant, 

which begins to replace the coal-fired generation plant at a tax of about $70/tCO2 (Figure 

1). At that threshold, developers of peak plants are suitably compensated for the 

increased cost of fuel and the capital cost of installing the peak natural gas plant. 

 Can coal be completely eliminated from the generation mix? To answer this 

question, we eliminate coal, set the wind farms to their maximum rated capacity of 1500 

MW for the aggregated southern wind sites and 500 MW for the northern wind sites, and 

allow a new gas power plant to be built to cover any of the demand not met by remaining 
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generation sources (wind, biomass, hydro and natural gas). Results indicate that natural 

gas facilities with 4333 MW of capacity would be required to cover remaining demand. 

Therefore, 5804 MW of coal capacity could be eliminated by replacing it with 4704 MW 

of new installed wind capacity and 4333 MW of natural gas capacity. Although this may 

not seem like a very desirable tradeoff in terms of new capital costs, the savings in CO2 

emissions could be substantial, with the new generation mix emitting only 22.26 Mt CO2; 

this is a savings of 31.03 Mt CO2 over current output of 53.29 Mt CO2. The cost per tCO2 

of eliminating the coal and replacing it with wind and a natural gas plant is $172.57/tCO2.  

The large addition of wind power lends to high emission reduction costs because 

wind power is given preference over other sources and thus must always be used by the 

system operator. This results in large fluctuations in the demand to be met by non-wind 

generating facilities. Consider the two-month period from the beginning of October to the 

end of November, for example. The addition of significant wind capacity leads to huge 

fluctuations in demand that has to be met by traditional sources (compare Figures 3 and 

4). This results in more frequent ramping (and starts and stops) of the peak-load 

generator, which increases maintenance costs. In addition, large amounts of spinning 

reserves in base-load (coal-fired) generators are required to cover any unforeseen 

fluctuations in wind. 

6. Discussion 

Our model highlights some of the unforeseen costs and benefits associated with 

wind. A significant increase in wind power could lead to a substantial increase in CO2 

savings; however, these CO2 savings come at a cost. Even with new wind farms in 

locations seemingly uncorrelated to the existing farms, there remain periods with little or 
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no wind, resulting in the need for significant backup power to cover the fluctuations in 

wind power. This backup power is more ideally suited to a natural gas powered plant, 

which could ramp up and down at a faster rate than coal plants and produce significantly 

less CO2 emissions. We also find that there is a rather substantial but not surprising 

impact that capacity factor plays on wind expansion.  This could be important for future 

expansion of wind power in Alberta because most extant wind farms already have a 

significantly large capacity factor, leading one to believe that subsequent contributions of 

wind turbines might occur in less ideal locations resulting in lower capacity factors and 

therefore increased costs. 

While Alberta has bountiful wind resources, it cannot take full advantage of wind 

power because its generating mix is heavily dependent on coal, with natural gas utilized 

for base-load, load following and even peak-load requirements when the small amount of 

hydropower is unable to handle peak-load needs. While a transmission link to British 

Columbia does exist, its capacity is small. Future research certainly needs to consider the 

potential for integrating the Alberta and BC grids, because BC relies on hydroelectricity 

for more than 90% of its needs. Clearly, as in the case of Denmark, the benefits of wind 

power in reducing CO2 emissions at low cost are enhanced when wind can take 

advantage of the storage capabilities of hydro reservoirs in (Norway), storing water 

behind a hydro dam when wind power is available and releasing that water to generate 

electricity when the wind no longer blows. This would require an integrated model of two 

power grids and a river basin model, a challenge for future research.  
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8. Figures and Tables 
 
Table 1: Wind Production and Capacity Factors for IEA Countries, 2005 
Values in [ ] are estimates. Values in bold italic are for 2004. NDA means no data 
available. 

Country Capacity (MW) 
Production 
(GWh) 

Capacity factor 
(%) 

Australia 708 2171 35 
Austria 819 NDA NDA 
Canada 683 [1800] 30 
Denmark 3128 6614 24 
Finland 82 170 24 
Germany 18428 [26500] 16 
Greece 605.4 1270 24 
Ireland 492.7 655 15 
Italy 1717 2140 14 
Japan 1077.7 1438.7 15 
Korea 100 [146] 17 
Mexico 2.2 4.2 22 
Netherlands 1213 [2000] 19 
Norway 270 504 21 
Portugal 1060 1773 19 
Spain 10028 20236 23 
Sweden 452 864 22 
Switzerland 11.59 8.4 8 
UK 1337.16 [2394] 20 
US 9149 [28051] 35 
Total (Average) 51363.75 96568.3 21 

 

 18



Table 2: Calculated Wind Penetration from Alberta and Northwestern BC Wind 
Sites. Values for Northwestern BC are based on the output of a single 2.3 MW turbine 
however farms can be expanded to 500 MW. Values in [ ] are calculated for part of a year 
and capacity factors are based on when site became operational. 
 

Site Capacity (MW) 
Production 
(GWh) 

Capacity factor 
(%) 

Castle River #1 40 350.44 28.7 
Cowley Ridge 38 332.918 7.4 
Kettles Hill 9 78.849 27.4 
McBride Lake  75 657.075 34.4 
Soderglen Wind 68.3 [236.1131] 35.0 
Summerview 68.4 599.2524 34.9 
Suncor Chin Chute 30 [52.59] 33.4 
Suncor Magrath 30 262.83 36.6 
Taylor Wind Farm 3.6 31.5396 18.8 
Aasen 2.3 4.250 21.1 
Bessborough 2.3 3.387 16.8 
Erbe 2.3 3.603 17.9 
Bear Mtn 2.3 7.044 35.0 
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Figure 1: CO2 Emissions (Mt), Wind Capacities (MW) and Optimal Capacity of a 
Peak-Load Natural Gas Plant (MW) for Various Carbon Taxes ($/tCO2) 

 

 20



Figure 2: CO2 Emissions (Mt), and Optimal Capacity of a Coal Plant (MW) for 
Various Carbon Taxes ($/tCO2) 
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Figure 3: Hourly Demand to be Met by Non-wind Generating Sources with Extant 
Installed Wind Capacity, 1 October to 30 November 2006 
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Figure 4: Hourly Demand to be Met by Non-wind Generating Sources when 
Installed Wind Capacity is 5000 MW, 1 October to 30 November 2006 
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